Discriminative Representations for Heterogeneous Images and Multimodal Data

Heather Couture

Dissertation Defense

Nov. 19, 2018

Heterogeneous images

Imaging + genomics

Cancer Heterogeneity

Nature Reviews | Cancer

Manusyk, "Intra-tumour heterogeneity: a looking glass for cancer?", 2012

Tissue Microarray

Motivations

Prognosis

Assess tumor aggressiveness:

Intermediate grade highly variable amongst pathologists

Rakha, 2010

Motivations

Prognosis

Assess tumor aggressiveness:

Intermediate grade highly variable amongst pathologists

Rakha, 2010

Personalized treatment

Target tumors based on molecular analysis:

Thesis Statement

Learned representations for histology images of tissue can capture both intra- and inter-tumor heterogeneity, enabling discriminative models for tumor properties. Combining these image features with data from other modalities such as genomics in a taskdriven model can provide insight into the shared tumor properties and further improve predictions. These computational techniques using discriminative features can provide a lower cost and more repeatable alternative to molecular methods and insight into tumor **heterogeneity**.

Contributions to Breast Cancer Research

- 1) Methods to capture **biologically-relevant** features by operating on the H&E stain intensities extracted from histology images
- A low cost and repeatable method for predicting histological, molecular, and genomic properties of tumors from H&E histology
- 3) A mechanism to find predicted **tumor heterogeneity** from H&E histology

Contributions to Computer Science will be discussed at the end

Outline

2) Handling heterogeneous images

3) Combining imaging & genomics

Outline

2) Handling heterogeneous images

3) Combining imaging & genomics

Problem Definition: Classification

Infer tumor class from histology

high

Grade:

status:

Problem Definition: Classification

Infer tumor class from histology

Stain Normalization & Extraction

Original image

Hematoxylin: blue Eosin: pink Hematoxylin: red Eosin: green Residual: blue

Stain channels

Background

Hand-crafted features

nuclei segmentation Appearance & shape

region growing

best fit ellipses

Focused on cell by cell morphology

Difficult to adapt to new data sets

Delaunay triangulation

eosin

hematoxylin

Background

Hand-crafted features

nuclei segmentation Appearance & shape

best fit

ellipses

region co growing ł

convex hematoxylin hulls

Delaunay

triangulation

eosin

Focused on cell by cell morphology

Difficult to adapt to new data sets

Learned features

Dictionary learning Deep learning

training images

Adapted to given images

patches

features

Method 1: Task-driven Dictionary Learning

Method 1: Task-driven Dictionary Learning

Method 2: Transferred Deep Features

(generalizable and discriminative)

Method 1 & 2: Classification

Feature & Classifier Comparison

AUC

Method	Log. reg.	Linear SVM	RBF SVM	DWD
Hand-crafted features	0.789 (0.032)	0.778 (0.027)	0.573 (0.040)	0.728 (0.022)
Dictionary learning (nuclei)	0.812 (0.020)	0.794 (0.017)	0.661 (0.045)	0.755 (0.035)
Dictionary learning (dense)	0.845 (0.020)	0.855 (0.024)	0.631 (0.035)	0.799 (0.023)
Deep transfer learning	0.832 (0.029)	0.825 (0.032)	0.716 (0.039)	0.811 (0.034)

SPECS data set:

43 Basal, 42 Luminal A 2 cores/patient 5-fold cross-validation

Dictionary learning:

Dictionary size 256 Patch size 17x17 Nuclei-centered patches vs. dense patches

Deep transfer learning:

AlexNet, conv4

Best results with dictionary learning

Deep transfer learning is promising Fine-tuning could improve further

Dictionary & Deep Learning Comparison

Input image	AUC			Accuracy		
	Basal	ER	Grade	Basal	ER	Grade
Dictionary						
Original RGB	0.810 (0.008)	0.843 (0.009)	0.905 (0.007)	0.790 (0.012)	0.797 (0.009)	0.828 (0.010)
Normalized RGB	0.817 (0.010)	0.850 (0.009)	0.911 (0.010)	0.780 (0.010)	0.790 (0.012)	0.821 (0.013)
Stain channels	0.822 (0.014)	0.860 (0.008)	0.927 (0.009)	0.795 (0.012)	0.805 (0.009)	0.848 (0.010)
Deep transfer						
Original RGB	0.784 (0.017)	0.819 (0.009)	0.906 (0.014)	0.775 (0.013)	0.767 (0.006)	0.819 (0.013)
Normalized RGB	0.807 (0.013)	0.857 (0.011)	0.928 (0.005)	0.784 (0.014)	0.792 (0.010)	0.848 (0.006)
Stain channels	0.785 (0.015)	0.851 (0.008)	0.933 (0.009)	0.778 (0.015)	0.798 (0.009)	0.842 (0.015)

CBCS data set: 1713 patient samples, 4 cores/patient Linear SVM, 5-fold cross-validation

Stain normalization improves results

Deep transfer learning works on non-RGB images

Dictionary learning slightly better than deep transfer learning

Task-driven Dictionary Learning

Classification Accuracy

	Unsupervised	Task-driven
Patch-level	0.507	0.520
Patient-level Mean of patch probabilities Sum of log of patch probabilities Linear SVM on histogram of features	0.646 0.729 0.698	0.642 0.664 0.713

SPECS data set:

43 Basal, 42 Luminal A 2 cores/patient 5-fold cross-validation

Dictionary size 128 Patch size 9x9 Task-driven extension successful for patch-level accuracy

Less clear for patient-level accuracy

Patient-level labels are weak when applied to small patches

Outline

Multiple Instance Learning

Method Overview

Method Overview

Multiple Instance Terminology

Standard assumption:

- Negative bag: all instances negative
- Positive bag: one or more instances positive

Good for diagnosis

Classes not treated symmetrically

Multiple Instance Terminology

Standard assumption:

- Negative bag: all instances negative
- Positive bag: one or more instances positive

Good for diagnosis

Classes not treated symmetrically

Alternative assumption: majority vote

Remove assumption: learn how to aggregate probabilities

Method 1: Quantile Aggregation

Method 1: Quantile Aggregation

Method 1: Quantile Aggregation

Method 1: Quantile Aggregation Prediction

Method 2: Iterative MI with Majority Vote

1) Initialize instance labels

1) Initialize instance labels

1) Initialize instance labels

Method 2: Iterative MI with Majority Vote Learn Instance Labels

Method Overview

Method 3: Fine-tune CNN

Method Comparison

Classification Accuracy

Method	Basal vs. Non-Basal	ER Status	Grade 1 vs. 3
AlexNet			
Baseline: Majority vote	0.776	0.772	0.853
Method 1: Quantile aggregation	0.799	0.815	0.876
Method 2: Iterative MI with majority vote	0.788	0.807	0.870
Method 3: Fine-tune CNN	0.831	0.841	0.954
VGG16			
Baseline: Majority vote	0.807	0.823	0.897
Method 1: Quantile aggregation	0.824	0.853	0.908
Method 2: Iterative MI with majority vote	0.812	0.846	0.905
Method 3: Fine-tune CNN	0.833	0.879	0.973

CBCS data set: 1713 patient samples, 4 cores/patient 5x random split: ¹/₂ train, ¹/₂ test

MI techniques for training always beneficial

Fine-tuning CNN gives largest improvement

Method 3: Fine-tune CNN MI Learning

Method 3: Fine-tune CNN MI Learning

Method 1: Quantile Aggregation Heterogeneity

Method 3: Fine-tune CNN Heterogeneity

Method 3: Fine-tune CNN Heterogeneity

Future Work

- Validation of heterogeneity
- Outcome prediction
- Model visualization and interpretation
- Other cancer and disease types

Outline

Tissue Microarray

Discriminative Common Space

Extract shared components of data

Improve discriminability

Standard Solution: Canonical Correlation Analysis

Challenges:

Features may not be discriminative

Not robust to small training set size or high dimensional, low sample size (HDLSS) data

My solution:

Add task-driven component to a deep variant of CCA

Background: Canonical Correlation Analysis

Background: Canonical Correlation Analysis

Solved with SVD

Background: Deep Canonical Correlation Analysis

Deep CCA: Correlation vs. Accuracy

Deep CCA Challenges

Compute linear CCA projections from A_1 and A_2 after DNN optimization

Task-driven Deep CCA

Goal: add task-driven objective (e.g., for classification)

Task-driven Deep CCA

Goal: add task-driven objective (e.g., for classification)

Linear CCA:

- 1) Maximize sum correlation
- 2) Such that projections are orthogonal

Solution 1: Eigendecomposition

DDCCA-ED

Solution 2: Whitening

Solution 2: Whitening

Solution 3: Soft Decorrelation

DDCCA-SD

Maximize sum correlation
Such that projections are orthogonal

Encourage orthogonality using regularization

aka DeCov (Cogswell, 2016) or Soft Decorrelation Loss (Chang, 2018)

$$\mathscr{L}_{Decorr}(\Sigma) = \sum_{i=1}^{d_o} \sum_{j \neq i}^{d_o} |\Sigma_{i,j}|$$
$$\Sigma_1 = \frac{1}{n-1} A_1 A_1^T \qquad \Sigma_2 = \frac{1}{n-1} A_2 A_2^T$$

Penalize off-diagonal elements of covariance matrix

Solution 4: No Explicit Decorrelation

DDCCA-ND

Maximize sum correlation
Such that projections are orthogonal

Rely on task objective to decorrelate as needed

Benefits of All DDCCA Models

Experiments: MNIST Split

Cross-modal classification

Robust to small training set size and HDLSS data

MNIST Split: Visualization with t-SNE

Digits are better clustered with task-driven method

8

Carolina Breast Cancer Study: Cross-modal

Train PAM50, Test Image

Cross-modal classification accuracy

1003 patients

Image features:

VGG16 – output of 4^{th} set of conv layers + mean pool \rightarrow 512 D

Method	Basal	ER	Grade
CCA	0.732 (0.010)	0.637 (0.008)	0.741 (0.005)
RCCA	0.815 (0.008)	0.811 (0.003)	0.877 (0.010)
PLS-SVD	0.650 (0.016)	0.656 (0.003)	0.797 (0.010)
DCCA	0.787 (0.010)	0.785 (0.011)	0.867 (0.012)
SoftCCA	0.780 (0.010)	0.769 (0.014)	0.848 (0.015)
DDCCA-ED	0.802 (0.015)	0.803 (0.029)	0.852 (0.011)
DDCCA-W	0.820 (0.008)	0.828 (0.006)	0.917 (0.019)
DDCCA-SD	0.796 (0.004)	0.811 (0.004)	0.874 (0.019)
DDCCA-ND	0.766 (0.013)	0.805 (0.007)	0.878 (0.011)

Train Image, Test PAM50

Method	Basal	ER	Grade		
CCA	0.943 (0.005)	0.869 (0.006)	0.828 (0.011)		
RCCA	0.978 (0.003)	0.905 (0.008)	0.836 (0.009)		
PLS-SVD	0.912 (0.018)	0.865 (0.005)	0.794 (0.012)		
DCCA	0.976 (0.005)	0.874 (0.010)	0.854 (0.015)		
SoftCCA	0.978 (0.004)	0.897 (0.010)	0.843 (0.007)		
DDCCA-ED	0.971 (0.009)	0.889 (0.010)	0.833 (0.010)		
DDCCA-W	0.983 (0.006)	0.908 (0.009)	0.845 (0.005)		
DDCCA-SD	0.978 (0.005)	0.908 (0.009)	0.848 (0.004)		
DDCCA-ND	0.975 (0.004)	0.896 (0.005)	0.817 (0.005)		

Genomic features:

PAM50 – expression for 50 genes

Train/validation/test: Random split ¹/₂, ¹/₄, ¹/₄

Carolina Breast Cancer Study: Regularization

Training:

 $OO\cdots OOB_{2}$

 $\begin{bmatrix} 00 \cdots 00 \end{bmatrix} A_2$

Whiten

00...00

(training only)

Corr

 $\cdot 00$

00

OO

Whiten

 $B_1 \bigcirc \bigcirc$

 $A_1 \bigcirc$

OO

Testing:

	Method	Training data	Basal	ER	Grade
	Linear SVM	Image only	0.785 (0.004)	0.838 (0.003)	0.897 (0.006)
	DNN	Image only	0.796 (0.007)	0.852 (0.008)	0.907 (0.009)
	DDCCA-W	Image+PAM50	0.827 (0.006)	0.839 (0.007)	0.911 (0.012)
	DDCCA-SD	Image+PAM50	0.820 (0.010)	0.826 (0.009)	0.859 (0.021)
	DDCCA-W	Image+GE163	0.840 (0.010)	0.838 (0.009)	0.910 (0.017)
	DDCCA-SD	Image+GE163	0.812 (0.011)	0.815 (0.020)	0.891 (0.020)
DNN f		-			

Genomic features:

PAM50 – expression for 50 genes GE163 – larger set of 163 genes

Large improvement for some tasks

Future Work

- Shared and individual representations
- Fine-tune CNN as one modality
- Data augmentation

Contributions to Computer Science

- Discriminative representations for histology images using dictionary learning or deep transfer learning
- 2) Multiple instance learning methods for handling large, heterogeneous images with an SVM on any type of feature set or with a CNN for end-to-end training
- 3) A set of **multimodal** methods to find a shared space that is also **discriminative**
- 4) Techniques for **deep learning** on problems traditionally viewed as **"small data"**

Acknowledgements

Advisor: Marc Niethammer

Other committee members: Steve Marron, Chuck Perou, Steve Pizer, Alex Berg

Collaborators: Melissa Troester, Lindsay Williams, Joseph Geradts, David Eberhard, Nancy Thomas, Susan Wei, Jayson Miedema

Funding: Royster Society, Lineberger Comprehensive Cancer Center, CISMM (NIH)
Questions?

2) Handling heterogeneous images 3) Combining imaging & genomics

Extra slides

Publications

- **ISBI 2015**: Hierarchical task-driven feature learning for tumor histology
- **MICCAI 2018**: Multiple instance learning for heterogeneous images: training a CNN for histopathology
- **npj Breast Cancer 2018**: Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype

Method 1: Task-driven Dictionary Learning

Task-Driven Dictionary Learning

Simplification: classify individual patches

Train classifier by minimizing expected loss Optimize over classifier and dictionary (Mairal, 2012) 1 1 5 4 3 7 5 3 5 3 5 5 9 0 6 3 5 2 0 0 applied to small images e.g., MNIST

separating

hyperplane

(classifier)

$$f(y, x, \alpha) = E[loss(y, w, \alpha(x, D))] + \frac{v}{2} ||w||_{2}^{2}$$

loss labels sparse encodings
e.g., logistic classifier regularization
$$log(1 + e^{-yw^{T}\alpha(x, D)})$$

Task-Driven Dictionary Learning

$$f(y, x, \alpha) = E[loss(\underline{y}, \underline{w}, \alpha(\underline{x}, \underline{D}))] + \frac{\underline{v}}{2} ||w||_{2}^{2}$$

labels / / dictionary
classifier patches
sparse encodings

Solution: stochastic gradient descent

Initialize dictionary D with unsupervised learning

Initialize classifier w with logistic regression on set of patch encodings Repeat until convergence:

Select set of labels y and patches x from training set

Compute sparse encodings α

Update classifier w using $\nabla_{w} f(y,x,\alpha)$

Update dictionary D using $\nabla_{D} f(y,x,\alpha)$

Method 1: Pre-trained CNN Sample Weighting

Sample weighting for unbalanced data

Sample weighting by grade

Method 1: Quantile Aggregation Classification Accuracy

	Sensitivity (%)	Specificity (%)	Accuracy (%)	Карра
Grade low-int vs high			82	0.64
ER status	84	72	84	0.64
Basal vs non-Basal	78	73	77	0.47
ROR-PT low-med vs high risk	79	74	76	0.47
Histologic subtype ductal vs lobular	71	96	94	0.66

CBCS data set: 859 patient samples, 4 cores/patient Random division into 2/3 training, 1/3 test

Method 1: Quantile Aggregation Inter-rater Agreement

Grade:

	Accuracy	Карра
Image analysis	82%	0.64
Agreement between two pathologists	89%	0.78
Reported by other groups		0.6-0.7, 0.5

ER Status Kappa:

Image analysis	0.64
Centralized pathology and SEER classifications	0.70
Different IHC antibodies	0.6-0.8
Medical records and staining of tissues	0.62

PAM50 Subtype Accuracy:

Image analysis	77%
IHC vs. RNA-based for Basal	90%
IHC vs. RNA-based for Luminal A	77%

Method 3: Fine-tune CNN Classification Accuracy (Multi-class)

	Mean	Quantile
Histologic subtype ductal vs lobular	0.931 (0.004)	0.952 (0.003)
ER status	0.833 (0.008)	0.841 (0.006)
Grade	0.680 (0.003)	0.676 (0.006)
ROR-PT	0.595 (0.003)	0.582 (0.008)
Intrinsic subtype	0.548 (0.006)	0.544 (0.003)

Background: Canonical Correlation Analysis

Given: input data $X_1 \in \Re^{d_1 \times n}$, $X_2 \in \Re^{d_2 \times n}$ (mean centered) Compute covariance matrices:

$$\Sigma_1 = \frac{1}{n-1} X_1 X_1^T \qquad \Sigma_2 = \frac{1}{n-1} X_2 X_2^T \qquad \Sigma_{12} = \frac{1}{n-1} X_1 X_2^T$$

Goal: find projections w_1 and w_2 such that the data are maximally correlated

$$\underset{w_{1,w_{2}}}{\operatorname{argmax}}\operatorname{corr}(w_{1}^{T}X_{1,}w_{2}^{T}X_{2}) = \underset{w_{1,w_{2}}}{\operatorname{argmax}} \frac{w_{1}^{T}\Sigma_{12}w_{2}}{\sqrt{w_{1}^{T}\Sigma_{1}w_{1}w_{2}^{T}\Sigma_{2}w_{2}}}$$

Alternatively, constrain projections to have unit variance:

maximize: $w_1^T \Sigma_{12} w_2$ covariance subject to: $w_1^T \Sigma_1 w_1 = w_2^T \Sigma_2 w_2 = 1$ unit variance

Background: Canonical Correlation Analysis

Find **multiple pairs** $(w_1^{(i)}, w_2^{(i)})$ such that $(w_1^{(i)})^T \Sigma_1 w_1^{(j)} = (w_2^{(i)})^T \Sigma_2 w_2^{(j)} = 0$ for $i \neq j$ orthogonal projections

Let
$$W_1 = [W_1^{(1)}, ..., W_1^{(k)}]$$
 and $W_2 = [W_2^{(1)}, ..., W_2^{(k)}]$
maximize: $tr(W_1^T \Sigma_{12} W_2)$
subject to: $W_1^T \Sigma_1 W_1 = W_2^T \Sigma_2 W_2 = I$

Solution:

Let $T = \Sigma_1^{-1/2} \Sigma_{12} \Sigma_2^{-1/2}$ SVD $T = U_1 \operatorname{diag}(\sigma) U_2^T$

Compute W_1 and W_2 from top k singular values of T:

$$W_1 = \Sigma_1^{-1/2} U_1^{(1:k)} \qquad W_2 = \Sigma_2^{-1/2} U_2^{(1:k)}$$

Background: Deep CCA

Andrew et al., ICML, 2013

Given: $A_1 = f_1(X_1, \Theta_1)$, $A_2 = f_2(X_2, \Theta_2)$, $A_1 \in \Re^{d_o xn}$, $A_2 \in \Re^{d_o xn}$ Compute covariance matrices:

Compute linear CCA after DNN optimization complete

Task-driven Deep CCA

Problem: maximizing sum correlation does not always result in improved cross-modal classification accuracy

Solution: add task-driven objective (e.g., for classification)

$$\mathcal{L}_{\text{task}}$$
 + λ \mathcal{L}_{CCA}

CCA objective:

$$argmax_{W_1,W_2,\Theta_1,\Theta_2} \underbrace{\operatorname{tr}(W_1^T \Sigma_{12} W_2)}_{W_1,W_2,\Theta_1,\Theta_2} equivalent to argmin_{W_1,W_2,\Theta_1,\Theta_2} \underbrace{||W_1^T A_1 - W_2^T A_2||_F^2}_{\ell_2 \text{ distance}}$$
when $\underbrace{(w_1^{(i)})^T \Sigma_1 w_1^{(i)} = (w_2^{(i)})^T \Sigma_2 w_2^{(i)} = 1}_{Unit \text{ variance}} \text{ for all i}$

$$unit \text{ variance}$$

Challenge: need to compute CCA projection in network

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$ // mini-batch mean // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i)$ // scale and shift

ZCA Whitening

Batch Size

Visualization with t-SNE

