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Cancer Heterogeneity

Inter-tumor heterogeneity:
subtypes with distinctive 
– morphology
– genomics
– clinical presentations
– responses to treatment
– outcomes

Intra-tumor heterogeneity: 
challenge for diagnosis and 
treatment

Manusyk, “Intra-tumour heterogeneity: a looking glass for cancer?”, 2012



3

Tissue Microarray

tumor area 

identified on 
slide

microarray assembly

H&E histology

immunohistochemistry

gene expression

Sauter, “Tissue 
microarrays in drug 

discovery,” 2003

genomic 

subtype

receptor status

histologic subtype, grade

core
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Motivations

Assess tumor aggressiveness:

Prognosis

Rakha, 2010

Grade 2 Grade 3Grade 1

Intermediate grade 
highly variable 

amongst pathologists
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Motivations

Assess tumor aggressiveness:

molecular 
analysis

treatment 1

treatment 2

treatment 3

Prognosis

Personalized treatment
Target tumors based on molecular analysis:

Rakha, 2010

Grade 2 Grade 3Grade 1

Intermediate grade 
highly variable 

amongst pathologists

Costly

Not routinely 
performed
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Thesis Statement

Learned representations for histology images of 
tissue can capture both intra- and inter-tumor 
heterogeneity, enabling discriminative models for 
tumor properties.  Combining these image features with 
data from other modalities such as genomics in a task-
driven model can provide insight into the shared tumor 
properties and further improve predictions.  These 
computational techniques using discriminative 
features can provide a lower cost and more 
repeatable alternative to molecular methods and 
insight into tumor heterogeneity.
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Contributions to Breast Cancer Research

1) Methods to capture biologically-relevant features by 
operating on the H&E stain intensities extracted from 
histology images

2) A low cost and repeatable method for predicting 
histological, molecular, and genomic properties of 
tumors from H&E histology

3) A mechanism to find predicted tumor heterogeneity 
from H&E histology

Contributions to Computer Science 
will be discussed at the end
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Outline

1) Representing histology images

2) Handling heterogeneous images 3) Combining imaging & genomics

+

tumor
class

image 
features

A
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Outline

1) Representing histology images

2) Handling heterogeneous images 3) Combining imaging & genomics

+

tumor
class

image 
features

A
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Problem Definition: Classification

Class 1 Class 2

Grade:

Histologic subtype:

Estrogen receptor 
status:

Genomic subtype:

Risk of recurrence 
(ROR-PT):

Infer tumor class from histology

vs

highlow

high

ductal

negative

Basal

low

lobular

positive

non-Basal
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Problem Definition: Classification

Class 1 Class 2

highlow

Grade:

Histologic subtype:

Estrogen receptor 
status:

Genomic subtype:

Risk of recurrence 
(ROR-PT):

Infer tumor class from histology

immunohistochemistry

vs

pathologist
high

ductal

negative

Basal

low

lobular

positive

non-Basal

combination

Ground truth

gene expression
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Stain Normalization & Extraction

Original image Stain normalized Stain channels

Hematoxylin: blue
Eosin: pink

Hematoxylin: red
Eosin: green

Residual: blue

Niethammer, 2010



13

Background

nuclei 
segmentation

Delaunay 
triangulation

region 
growing

hematoxylin

eosin

convex 
hulls

best fit 
ellipses

Appearance & shape

Focused on cell by cell 
morphology

Difficult to adapt to new 
data sets

Hand-crafted features
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Background

nuclei 
segmentation

Delaunay 
triangulation

region 
growing

hematoxylin

eosin

convex 
hulls

best fit 
ellipses

Appearance & shape

Focused on cell by cell 
morphology

Difficult to adapt to new 
data sets

Hand-crafted features

training images patches features

Adapted to given 
images

Learned features

Dictionary learning
Deep learning
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Method 1: Task-driven Dictionary Learning

training images
random 
patches

dictionary

sparse encoding

≈ 0.2    + 0.2    + 0.5     + 0.1

=[0,…,0.1,…,0.2,…,0.2,…,0.5,…,0]

novel image

Elastic net:

data fitting sparsity-inducing 
regularization

α=argmin
α

1

2
‖x−Dα‖2

2
+λ1‖α‖

1+λ2‖α‖
2

2
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Method 1: Task-driven Dictionary Learning

training images
random 
patches

dictionary

sparse encoding

≈ 0.2    + 0.2    + 0.5     + 0.1

=[0,…,0.1,…,0.2,…,0.2,…,0.5,…,0]

novel image

classifier

update classifier 
based on current 

dictionary

update dictionary 
to improve 

classification

task-driven extension
(Mairal, 2012)

Apply to patches then
aggregate patch predictions to 

image prediction
Elastic net:

data fitting sparsity-inducing 
regularization

α=argmin
α

1

2
‖x−Dα‖2

2
+λ1‖α‖

1+λ2‖α‖
2

2
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Method 2: Transferred Deep Features

Convolutional Neural Network
ImageNet 

image

histology 
image

1000 
ImageNet 
classes

train new 
classifier

predicted 
label

ground
truth

loss

minimize
cost of

incorrect
classification

transfer 
parameters

pre-trained on 
ImageNet

activations from intermediate layer
(generalizable and discriminative)

lower levels 
generalizable

upper layers 
tuned to 

ImageNet
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Method 1 & 2: Classification

training images

class 1

class 2

extracted features
(mean pooled over image)

class X

predicted class

classifier

novel image
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Feature & Classifier Comparison

SPECS data set:
43 Basal, 42 Luminal A

2 cores/patient
5-fold cross-validation

Dictionary learning:
Dictionary size 256
Patch size 17x17

Nuclei-centered patches 
vs. dense patches

Deep transfer learning:
AlexNet, conv4

Method Log. reg. Linear SVM RBF SVM DWD

Hand-crafted features
Dictionary learning (nuclei)
Dictionary learning (dense)
Deep transfer learning

0.789 (0.032)
0.812 (0.020)
0.845 (0.020)
0.832 (0.029)

0.778 (0.027)
0.794 (0.017)
0.855 (0.024)
0.825 (0.032)

0.573 (0.040)
0.661 (0.045)
0.631 (0.035)
0.716 (0.039)

0.728 (0.022)
0.755 (0.035)
0.799 (0.023)
0.811 (0.034)

AUC

Best results with dictionary learning

Deep transfer learning is promising

Fine-tuning could improve further
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Dictionary & Deep Learning Comparison

CBCS data set: 1713 patient samples, 4 cores/patient
Linear SVM, 5-fold cross-validation

Deep transfer learning

Input image
AUC Accuracy

Basal ER Grade Basal ER Grade

Dictionary 
  Original RGB
  Normalized RGB
  Stain channels

0.810 (0.008)
0.817 (0.010)
0.822 (0.014)

0.843 (0.009)
0.850 (0.009)
0.860 (0.008)

0.905 (0.007)
0.911 (0.010)
0.927 (0.009)

0.790 (0.012)
0.780 (0.010)
0.795 (0.012)

0.797 (0.009)
0.790 (0.012)
0.805 (0.009)

0.828 (0.010)
0.821 (0.013)
0.848 (0.010)

Deep transfer
  Original RGB
  Normalized RGB
  Stain channels

0.784 (0.017)
0.807 (0.013)
0.785 (0.015)

0.819 (0.009)
0.857 (0.011)
0.851 (0.008)

0.906 (0.014)
0.928 (0.005)
0.933 (0.009)

0.775 (0.013)
0.784 (0.014)
0.778 (0.015)

0.767 (0.006)
0.792 (0.010)
0.798 (0.009)

0.819 (0.013)
0.848 (0.006)
0.842 (0.015)

Stain normalization improves results

Deep transfer learning works on non-RGB images

Dictionary learning slightly better than deep transfer learning

Original 
RGB

Normalized 
RGB

Stain 
channels
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Task-driven Dictionary Learning

Unsupervised Task-driven

Patch-level 0.507 0.520

 Patient-level
    Mean of patch probabilities
    Sum of log of patch probabilities
    Linear SVM on histogram of features

0.646
0.729
0.698

0.642
0.664
0.713

SPECS data set:
43 Basal, 42 Luminal A

2 cores/patient
5-fold cross-validation

Dictionary size 128
Patch size 9x9

Classification Accuracy

Task-driven extension successful for 
patch-level accuracy

Less clear for patient-level accuracy

Patient-level labels are weak when 
applied to small patches
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Outline

1) Representing histology images

2) Handling heterogeneous images 3) Combining imaging & genomics

+

tumor
class

image 
features

A

B



23

? ? ? ?

? ? ? ?

? ? ? ?

instance
label unknown

bag
label given

Multiple Instance Learning

weakly supervised classification
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Method Overview

Generate instances

Extract features

Predict instance classes

Aggregate instance predictions

Predict tumor class
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Method Overview

Generate instances

Extract features

Predict instance classes

Aggregate instance predictions

Predict tumor class

Method 1:
Extract features

+
train classifier

Method 2:
Learn latent 

instance labels

Method 3:
End-to-end 

fine-tuning of 
CNN
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Multiple Instance Terminology

Standard assumption:

– Negative bag: all instances negative
– Positive bag: one or more instances positive

positive bags negative bags
Good for diagnosis

Classes not treated 
symmetrically
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Multiple Instance Terminology

Standard assumption:

– Negative bag: all instances negative
– Positive bag: one or more instances positive

Alternative assumption: majority vote

Remove assumption: learn how to aggregate probabilities

positive bags negative bags

class 1 class 2

class 1 class 2

Good for diagnosis

Classes not treated 
symmetrically
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Method 1: Quantile Aggregation

class 1 class 2

prediction for 
each instance

Median
q

1

50% data 50% data
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Method 1: Quantile Aggregation

class 1 class 2

prediction for 
each instance

Median + upper and lower quartiles

Median

q
1

q
2

q
3

q
1

50% data 50% data

25% data 25% data25% data25% data
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Method 1: Quantile Aggregation

class 1 class 2

prediction for 
each instance

Median + upper and lower quartiles

Quantile function

Q = [ q
1
 q

2
 . . . q

N
 ]

for N evenly spaced quantiles

Median
q

1

50% data 50% data

25% data 25% data25% data25% data

q
1

q
2

q
3
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Method 1: Quantile Aggregation

Prediction

 test image

predicted 
class

instance SVM

CNN
features

extract instance 
features predict class 

of instances

compute 
quantile function

predict 
image class

aggregation SVM
CNN

use bag 
label

or any other 
feature type
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Method 2: Iterative MI with Majority Vote

 test image

predicted 
class

instance SVM

CNN
features

extract instance 
features predict class 

of instances

predict 
image class

(majority vote)

CNN

learn instance 
labels during 

training

or any other 
feature type
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Method 2: Iterative MI with Majority Vote

Learn Instance Labels

1) Initialize instance labels

... 
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Method 2: Iterative MI with Majority Vote

Learn Instance Labels

1) Initialize instance labels

2) Train classifier

... 
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Method 2: Iterative MI with Majority Vote

Learn Instance Labels

1) Initialize instance labels

2) Train classifier 3) Predict instance labels

... 
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Method 2: Iterative MI with Majority Vote

Learn Instance Labels

1) Initialize instance labels

2) Train classifier 3) Predict instance labels

4) Adjust instance labels to 
meet MI constraints

✗

✓

✓
... ... 

sort by 
classifier 

output
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Method 2: Iterative MI with Majority Vote

Learn Instance Labels

1) Initialize instance labels

2) Train classifier 3) Predict instance labels

4) Adjust instance labels to 
meet MI constraints

5) Repeat until 
no instances 
change label

✗

✓

✓
... ... 

sort by 
classifier 

output
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Method Overview

Generate instances

Extract features

Predict instance classes

Aggregate instance predictions

Predict tumor class

Method 1:
Extract features

+
train classifier

Method 3:
End-to-end 

fine-tuning of 
CNN

Method 2:
Learn latent 

instance labels
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Method 3: Fine-tune CNN

Fully Convolutional Network

class 
predictions 

for each 
instance

aggregated 
predictions over 

foreground

loss

foreground mask

C classes

training image

minimize cost of 
incorrect 

classification

initialized from 
pre-trained CNN

multiple instance 
learning

(mean or quantile 
aggregation)

error backpropagation

bag 
label
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Method Comparison

Method Basal vs. 
Non-Basal

ER  
Status

Grade
 1 vs. 3

AlexNet
     Baseline: Majority vote
     Method 1: Quantile aggregation
     Method 2: Iterative MI with majority vote
     Method 3: Fine-tune CNN

0.776
0.799
0.788
0.831

0.772
0.815
0.807
0.841

0.853
0.876
0.870
0.954

 VGG16
     Baseline: Majority vote
     Method 1: Quantile aggregation
     Method 2: Iterative MI with majority vote
     Method 3: Fine-tune CNN

0.807
0.824
0.812
0.833

0.823
0.853
0.846
0.879

0.897
0.908
0.905
0.973

CBCS data set: 1713 patient samples, 4 cores/patient
5x random split: ½ train, ½ test

Classification Accuracy

MI techniques for training always beneficial

Fine-tuning CNN gives largest improvement
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Method 3: Fine-tune CNN

MI Learning

Training Testing

single 
instance

single instance:
label Y

bag X:
label Y given

instance x
n
:

label y
n
 unknown

cropped region:
label Y

whole image:
label Y

aggregation 
over many 
instances

aggregate all 
instance 

predictions

all
 instances
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Method 3: Fine-tune CNN

MI Learning

Training Testing

single instance:
label Y

bag X:
label Y given

instance x
n
:

label y
n
 unknown

cropped region:
label Y

whole image:
label Y

aggregation 
over many 
instances

aggregate all 
instance 

predictions

all
 instances

single 
instance 
learning

multiple 
instance 
learning

single 
instance

MI techniques 
during training 
essential on 

heterogeneous 
images
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Method 1: Quantile Aggregation

Heterogeneity

Grade

ER status

Genomic 
subtype

ROR

Histologic 
subtype

Grade

ER status

Genomic 
subtype

ROR

Histologic 
subtype

Grade low-int   ER-    Basal
Ductal       ROR low-med

Grade high    ER+     Non-Basal
Lobular        ROR high
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Method 3: Fine-tune CNN

Heterogeneity
Histology

image
Histologic 
subtype

ER status Grade ROR
Genomic 
subtype
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Method 3: Fine-tune CNN

Heterogeneity

Grade 1 vs. 3 Genomic Subtype Basal vs. LumA

Histology
image

Histologic 
subtype

ER status Grade ROR
Genomic 
subtype
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Future Work

● Validation of heterogeneity

● Outcome prediction

● Model visualization and interpretation

● Other cancer and disease types
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Outline

1) Representing histology images

2) Handling heterogeneous images 3) Combining imaging & genomics

+

tumor
class

image 
features

A

B
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Tissue Microarray

tumor area 

identified on 
slide

microarray assembly

H&E histology

immunohistochemistry

gene expression

Sauter, “Tissue 
microarrays in drug 

discovery,” 2003

genomic 
subtype

receptor status

histologic subtype, grade
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Discriminative Common Space

image 
features

genomic 
features

Class 1 Class 2 Class 3

Extract shared components of data

Improve discriminability
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Standard Solution: Canonical Correlation Analysis

Challenges:

Features may not be discriminative

Not robust to small training set size or high dimensional, low 
sample size (HDLSS) data

My solution:

Add task-driven component to a deep variant of CCA

modality 2 proj.

m
o
d
a
lit

y
 1

 p
ro

j.
X

2

gene 
expression

X
1

image 
features

Find space in 
which modalities 

are maximally 
correlated
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Background: Canonical Correlation Analysis

modality 2 proj.

m
o
d
a
lit

y
 1

 p
ro

j.

linear 
projection 

w
1

T X
1

linear 
projection 

w
2

T X
2

X
2

gene 
expression

X
1

image 
features

X1ϵℜd1 x n
, X2ϵℜd2 xn

Maximize 
correlation
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Background: Canonical Correlation Analysis

modality 2 proj.

m
o
d
a
lit

y
 1

 p
ro

j.
X

2

gene 
expression

X
1

image 
features

Maximize 
sum correlation 
from orthogonal 

projections

X1ϵℜd1 x n
, X2ϵℜd2 xn

argmax
W 1,W 2

∑
k

corr ((w1

(k ))T X1 ,(w2

(k ))T X 2 )

Solved with SVD

Goal:

linear 
projection 

w
1

T X
1

linear 
projection 

w
2

T X
2

such that (w1

(i))T X 1 X1

T
w1

( j)=(w2

(i))T X 2 X 2

T
w2

( j)=0 for i≠ j

orthogonal projections

sum correlation
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Background: Deep Canonical Correlation Analysis

modality 2 proj.

m
o
d
a
lit

y
 1

 p
ro

j.

X
2

gene 
expression

X
1

image 
features

DNN DNN

A
1

A
2

f
1

f
2

features 
replaced by 
activations

A1 ϵℜdo xn
, A2ϵℜdo x n

Maximize 
sum correlation 
from orthogonal 

projections

linear 
projection 

w
1

T X
1

linear 
projection 

w
2

T X
2

(Andrew, 2013)
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Deep CCA: Correlation vs. Accuracy

DCCA (Andrew, 2013) SoftCCA (Chang, 2018)

MNIST: 28 x 28 images of digits
Split into left and right: 28 x 14 each

Cross-modal classification:
1) Train CCA with both modalities
2) Compute projections for both modalities
3) Train classifier on projection from 1st modality
4) Test with projection from 2nd modality

variety of hyperparameters
50 components

best classification 
accuracy

correlation 
≠

classification 
accuracy
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Deep CCA Challenges

DNN DNN

A
1

A
2

f
1

f
2

X
2

X
1

Corr

W
1

T A
1 W

2
T A

2
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Deep CCA Challenges

DNN DNN

A
1

A
2

f
1

f
2

X
2

X
1

Corr

W
1

T A
1 W

2
T A

2

‖Σ1

−1/2 Σ12 Σ2

−1/2‖tr

DNN DNN

A
1

A
2

f
1

f
2

X
2

X
1

TNO

equivalent 
objective Trace norm objective:

DCCA

Σ1=
1

n−1
A1 A1

T

Σ2=
1

n−1
A2 A2

T

Σ12=
1

n−1
A1 A 2

T
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Deep CCA Challenges

DNN DNN

A
1

A
2

f
1

f
2

X
2

X
1

Corr

W
1

T A
1 W

2
T A

2

‖Σ1

−1/2 Σ12 Σ2

−1/2‖tr

DNN DNN

A
1

A
2

f
1

f
2

X
2

X
1

TNO

equivalent 
objective Trace norm objective:

DCCA

Compute linear CCA projections from 
A

1
 and A

2
 after DNN optimization

Σ1=
1

n−1
A1 A1

T

Σ2=
1

n−1
A2 A2

T

Σ12=
1

n−1
A1 A 2

T
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Task-driven Deep CCA

Goal: add task-driven objective (e.g., for classification)

Y

DNN DNN

DNN

B
1

B
2

f
task

f
1

f
2

X
2

X
1

CCA CCA

A
1

A
2

Corr

Task
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Task-driven Deep CCA

Goal: add task-driven objective (e.g., for classification)

How?

Y

DNN DNN

DNN

B
1

B
2

f
task

f
1

f
2

X
2

X
1

CCA CCA

A
1

A
2

Corr

Task

Linear CCA:

1) Maximize sum correlation
2) Such that projections are orthogonal
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Solution 1: Eigendecomposition

Y

DNN DNN

DNN

B
1

B
2

f
task

f
1

f
2

X
2

X
1

CCA CCA

A
1

A
2

Corr

Task

DDCCA-ED

1) Maximize sum correlation
2) Such that projections are orthogonal

Compute CCA projections with 
eigendecomposition instead of SVD

aka CCA Layer (Dorfer, 2018)
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Solution 2: Whitening

DDCCA-W

Y

DNN DNN

DNN

B
1

B
2

f
task

f
1

f
2

X
2

X
1

Whiten Whiten

A
1

A
2

Corr

Task

1) Maximize sum correlation
2) Such that projections are orthogonal

No explicit CCA projection: 
learn ZCA whitening transform to 
orthogonalize activations

aka Decorrelated Batch Normalization (Huang, 2018)
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Solution 2: Whitening

DDCCA-W

Y

DNN DNN

DNN

B
1

B
2

f
task

f
1

f
2

X
2

X
1

Whiten Whiten

A
1

A
2

Corr

Task

1) Maximize sum correlation
2) Such that projections are orthogonal

No explicit CCA projection: 
learn ZCA whitening transform to 
orthogonalize activations

aka Decorrelated Batch Normalization (Huang, 2018)

original decorrelated PCA-whitened ZCA-whitened

Nam, 2014
rotate rescale rotate 

back

Whitening:
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Solution 3: Soft Decorrelation

DDCCA-SD

ℒDecorr (Σ)=∑
i=1

do

∑
j≠i

do

|Σi , j|

Y

DNN DNN

DNN

A
1

A
2

f
task

f
1

f
2

X
2

X
1

Corr

Task

Decorr Decorr

1) Maximize sum correlation
2) Such that projections are orthogonal

Encourage orthogonality using 
regularization

aka DeCov (Cogswell, 2016) or 
Soft Decorrelation Loss (Chang, 2018)

Σ1=
1

n−1
A1 A1

T Σ2=
1

n−1
A2 A2

T

Penalize off-diagonal elements of 
covariance matrix
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Solution 4: No Explicit Decorrelation

DDCCA-ND

Y

DNN DNN

DNN

A
1

A
2

f
task

f
1

f
2

X
2

X
1

Corr

Task

1) Maximize sum correlation
2) Such that projections are orthogonal

Rely on task objective to decorrelate 
as needed
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Benefits of All DDCCA Models

Y

DNN DNN

DNN

B
1

B
2

f
task

f
1

f
2

X
2

X
1

CCA CCA

A
1

A
2

Corr

Task

Downsize input representation, 
reducing overfitting difficulty of CCA

Improved robustness for small training set 
and HDLSS data

Improve discriminability

Benefits large and small training sets

Learn non-linear transformation

More powerful representation, especially 
benefiting large training sets
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Experiments: MNIST Split

training set size: 1000
# of components: 50

# of components: 50

Training set size Input feature dimension

Robust to small training set size and HDLSS data

Cross-modal classification
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MNIST Split: Visualization with t-SNE

CCA DCCA DDCCA-W

Digits 0 to 9
training set size: 10,000

# of components: 50

Digits are better clustered with task-driven method
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Carolina Breast Cancer Study: Cross-modal

Cross-modal 
classification accuracy

1003 patients

Image features:

VGG16 – output of 4th set 
of conv layers + mean 
pool → 512 D

Genomic features:

PAM50 – expression for 
50 genes

Train/validation/test: 

Random split ½, ¼, ¼

Method Basal ER Grade

CCA
RCCA
PLS-SVD
DCCA
SoftCCA
DDCCA-ED
DDCCA-W
DDCCA-SD
DDCCA-ND

0.732 (0.010)
0.815 (0.008)
0.650 (0.016)
0.787 (0.010)
0.780 (0.010)
0.802 (0.015)
0.820 (0.008)
0.796 (0.004)
0.766 (0.013)

0.637 (0.008)
0.811 (0.003)
0.656 (0.003)
0.785 (0.011)
0.769 (0.014)
0.803 (0.029)
0.828 (0.006)
0.811 (0.004)
0.805 (0.007)

0.741 (0.005)
0.877 (0.010)
0.797 (0.010)
0.867 (0.012)
0.848 (0.015)
0.852 (0.011)
0.917 (0.019)
0.874 (0.019)
0.878 (0.011)

Train PAM50, Test Image

Train Image, Test PAM50

Method Basal ER Grade

CCA
RCCA
PLS-SVD
DCCA
SoftCCA
DDCCA-ED
DDCCA-W
DDCCA-SD
DDCCA-ND

0.943 (0.005)
0.978 (0.003)
0.912 (0.018)
0.976 (0.005)
0.978 (0.004)
0.971 (0.009)
0.983 (0.006)
0.978 (0.005)
0.975 (0.004)

0.869 (0.006)
0.905 (0.008)
0.865 (0.005)
0.874 (0.010)
0.897 (0.010)
0.889 (0.010)
0.908 (0.009)
0.908 (0.009)
0.896 (0.005)

0.828 (0.011)
0.836 (0.009)
0.794 (0.012)
0.854 (0.015)
0.843 (0.007)
0.833 (0.010)
0.845 (0.005)
0.848 (0.004)
0.817 (0.005)
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Carolina Breast Cancer Study: Regularization

DNN

B
1

B
2

f
task

DNN DNNf
1

f
2

X
2

X
1

Whiten Whiten

A
1

A
2

(training only)

Y

Corr

Task

Genomic features:

PAM50 – expression for 50 genes

GE163 – larger set of 163 genes

Large improvement for some tasks

images genomics

+Training: Testing:

images only

Method Training data Basal ER Grade

Linear SVM
DNN
DDCCA-W
DDCCA-SD
DDCCA-W
DDCCA-SD

Image only
Image only

Image+PAM50
Image+PAM50
Image+GE163
Image+GE163

0.785 (0.004)
0.796 (0.007)
0.827 (0.006)
0.820 (0.010)
0.840 (0.010)
0.812 (0.011)

0.838 (0.003)
0.852 (0.008)
0.839 (0.007)
0.826 (0.009)
0.838 (0.009)
0.815 (0.020)

0.897 (0.006)
0.907 (0.009)
0.911 (0.012)
0.859 (0.021)
0.910 (0.017)
0.891 (0.020)
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Future Work

● Shared and individual representations

● Fine-tune CNN as one modality

● Data augmentation
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Contributions to Computer Science

1) Discriminative representations for histology images 
using dictionary learning or deep transfer learning

2) Multiple instance learning methods for handling 
large, heterogeneous images with an SVM on any 
type of feature set or with a CNN for end-to-end 
training

3) A set of multimodal methods to find a shared space 
that is also discriminative

4) Techniques for deep learning on problems 
traditionally viewed as “small data”
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Questions?

1) Representing histology images

2) Handling heterogeneous images 3) Combining imaging & genomics

+

tumor
class

image 
features

A

B



  



  

Extra slides
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Publications

● ISBI 2015: Hierarchical task-driven feature learning for 
tumor histology

● MICCAI 2018: Multiple instance learning for 
heterogeneous images: training a CNN for 
histopathology

● npj Breast Cancer 2018: Image analysis with deep 
learning to predict breast cancer grade, ER status, 
histologic subtype, and intrinsic subtype
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Method 1: Task-driven Dictionary Learning

dictionar
y

encoding pooling
pooling

encoding

. . .

level 1 level 2input image

D
1 D

2

α
1

α
2

max max



78

Task-Driven Dictionary Learning

f ( y , x ,α)=E [ loss( y , w ,α( x , D))]+υ
2
∥w∥2

2

sparse encodingslabels

w
separating 
hyperplane
(classifier)

regularization

Train classifier by minimizing expected loss
Optimize over classifier and dictionary (Mairal, 2012)

loss
e.g., logistic

Simplification: classify individual patches

log (1+e−y w
Tα(x , D))

applied to small 
images e.g., MNIST

classifier
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Task-Driven Dictionary Learning

Solution: stochastic gradient descent

Initialize dictionary D with unsupervised learning

Initialize classifier w with logistic regression on set of patch encodings

Repeat until convergence:

Select set of labels y and patches x from training set

Compute sparse encodings α

Update classifier w using ∇
w
f(y,x,α)

Update dictionary D using ∇
D
f(y,x,α)

f ( y , x ,α)=E [ loss( y , w ,α( x , D))]+υ
2
∥w∥

2

2

dictionary

patches

sparse encodings

labels

classifier
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Method 1: Pre-trained CNN

Sample Weighting

Sample weighting for unbalanced data

http://scikit-learn.org/stable/auto_examples/svm/
plot_separating_hyperplane_unbalanced.html

Sample weighting by grade

w
c
 =                1                

        # samples of class c

w
c,g

 =                        1                       

          # samples of class c, grade g



  

Method 1: Quantile Aggregation

Classification Accuracy

Sensitivity (%) Specificity (%) Accuracy (%) Kappa

Grade low-int vs high 82 0.64

ER status 84 72 84 0.64

Basal vs non-Basal 78 73 77 0.47

ROR-PT low-med vs 
high risk

79 74 76 0.47

Histologic subtype
ductal vs lobular

71 96 94 0.66

CBCS data set: 859 patient samples, 4 cores/patient
Random division into 2/3 training, 1/3 test
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Method 1: Quantile Aggregation

Inter-rater Agreement

ER Status Kappa:
Image analysis 0.64
Centralized pathology and SEER classifications 0.70
Different IHC antibodies 0.6-0.8
Medical records and staining of tissues 0.62

PAM50 Subtype Accuracy:
Image analysis 77%
IHC vs. RNA-based for Basal 90%
IHC vs. RNA-based for Luminal A 77%

Grade:
Accuracy Kappa

Image analysis 82% 0.64
Agreement between two pathologists 89% 0.78
Reported by other groups 0.6-0.7, 0.5



  

Method 3: Fine-tune CNN

Classification Accuracy (Multi-class)

Mean Quantile

Histologic subtype 
ductal vs lobular

0.931 (0.004) 0.952 (0.003)

ER status 0.833 (0.008) 0.841 (0.006)

Grade 0.680 (0.003) 0.676 (0.006)

ROR-PT 0.595 (0.003) 0.582 (0.008)

Intrinsic subtype 0.548 (0.006) 0.544 (0.003)
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Background: Canonical Correlation Analysis

argmax
w1,w2

corr (w1

T
X 1,w2

T
X2)=argmax

w1,w2

w1

T Σ12w2

√w1

T Σ1 w1w2

T Σ2 w2

maximize: w1

T Σ12 w2

subject to: w1

T Σ1 w1=w2

T Σ2 w2=1

Alternatively, constrain projections to have unit variance:

Given: input data   (mean centered)
Compute covariance matrices:

Goal: find projections w
1
 and w

2
 such that the data are maximally 

correlated

Σ1=
1

n−1
X1 X 1

T Σ2=
1

n−1
X2 X2

T Σ12=
1

n−1
X1 X2

T

X1ϵℜd1 x n
, X2ϵℜd2 xn

covariance

unit variance
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Background: Canonical Correlation Analysis

maximize: tr (W 1

T Σ12W 2)

subject to: W 1

T Σ1W 1=W 2

T Σ2W 2=I

Find multiple pairs                such that

                                                    for i ≠ j

Let W1 = [w1
(1),…,w1

(k)] and W2 = [w2
(1),…,w2

(k)]

W 1=Σ1

−1 /2
U 1

(1: k )
W 2=Σ2

−1/2
U 2

(1: k)

Solution:

Let 

SVD 

Compute W1 and W2 from top k singular values of T:

T=Σ1

−1/2 Σ12Σ2

−1/2

T=U 1 diag (σ)U2

T

(w1

(i))T Σ1 w1

( j)=(w2

(i))T Σ2w2

( j)=0

orthogonal projections

(w1

(i)
,w2

(i))



86

Background: Deep CCA

maximize: tr (W 1

T Σ12W 2)

subject to: W 1

T Σ1W 1=W 2

T Σ2W 2=I X
2

X
1

TNO

DNN DNN

A
1

A
2

f
1

f
2Same objective:

Trick: when k=d
o
 (# of components = # of features in A)

Solution: maximize ||T||
tr
 (trace norm objective)

Compute linear CCA after DNN optimization complete

Σ1=
1

n−1
A1 A1

T+rI Σ2=
1

n−1
A2 A2

T+rI

Σ12=
1

n−1
A1 A2

T

‖T‖tr=tr (T T
T )1/2

T=Σ1

−1/2 Σ12Σ2

−1/2

∑
i=1

k

corr ((w1

(i))T A1,(w2

(i))T A2)=∑
i=1

k

σ i

T=U 1 diag (σ)U 2

T

equivalent to

A1=f 1(X 1,Θ1) , A2=f 2(X2,Θ2) , A1ϵℜdo xn
, A2ϵℜdo x n

Given:
Compute covariance matrices:

Andrew et al., ICML, 2013
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Task-driven Deep CCA

Problem: maximizing sum correlation does not always result in 
improved cross-modal classification accuracy

Solution: add task-driven objective (e.g., for classification)

ℒtask + λ ℒCCA

CCA objective:

Challenge: need to compute CCA projection in network

argmax
W 1 ,W 2 ,Θ1, Θ2

tr (W 1

T Σ12W 2) equivalent to

when (w1

(i))T Σ1 w1

(i)=(w2

(i))T Σ2 w2

(i)=1

unit variance

covariance

ℓ
2
 distance

separable across batches

argmin
W 1 ,W 2 ,Θ1,Θ2

‖W 1

T
A1−W 2

T
A2‖F

2

for all i
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Batch Normalization
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ZCA Whitening

https://stats.stackexchange.com/questions/117427/what-is-the-difference-between-zca-whitening-and-pca-whitening

B = V Λ−1/2
V

T
A

Σ=
1

n−1
A A

T=ΛV
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Batch Size
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Visualization with t-SNE

Original image features Regularization with DDCCA-W
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