2024 embedded VISION SUMMIT°

Data-Efficient & Generalizable: The Domain-Specific Small Vision Model Revolution

Heather D. Couture

Founder & Computer Vision Consultant Pixel Scientia Labs

From Large Language Models to Large Vision Models

Foundation Models: Generality & Adaptability

Problem: Unique Imaging Modality

ImageNet

Histopathology Image credit: Shutterstock

Multispectral Satellite Image credit: ESA © 2024 Pixel Scientia Labs

Fluorescence Microscopy Image credit: Shutterstock

Drone Image credit: Pixabay

Pixel Scientia

Problem: Limited Data

1.2 million vs. 200 images

New medical imaging device

Data collection and labeling can be...

Expensive

Time-consuming

Difficult

Problem: Compute Resource Constraints

Model size	Model name	# parameters (million)	FLOPS per inference (billion)
Small	MobileNetV2	7	1.2
	ResNet18	12	1.8
	ResNet50	26	4.1
	ViT-Small	22	4.6
	Swin-Tiny	28	4.5
Medium	ResNet101	45	7.6
	Swin-Small	50	8.7
	ViT-Base	87	17.6
	Swin-Base	88	15.5
Large	Swin-Large	197	34.5
	ViT-Large	304	61.6
	ViT-Giant	1843	2860

Publicly-available foundation models are getting larger

Solution: Domain-Specific Foundation Models

Histopathology Image credit: Shutterstock

Fluorescence Microscopy Image credit: Shutterstock

Multispectral Satellite Image credit: ESA

ixel Scientia

Forestry Drone Image credit: Pixabay

Solution: Domain-Specific Foundation Models

Fluorescence Microscopy Image credit: Shutterstock

Multispectral Satellite Image credit: ESA

Forestry Drone Image credit: Pixabay

Pre-Training and Fine-Tuning

Self-Supervised Pretext Task: Contrastive

No manual labels needed

Source: https://blog.research.google/2020/04/advancing-self-supervised-and-semi.html

Self-Supervised Pretext Task: Masked Autoencoder

Source: He, Masked Autoencoders Are Scalable Vision Learners, 2021

© 2024 Pixel Scientia Labs

EuroSAT: land cover classification, 27k images, 80/20 pre-train/test

(a) Industrial Buildings

s (b) Residential Buildings

(f) Sea & Lake

(g) Herbaceous Vegetation

(c) Annual Crop

(h) Highway

(d) Permanent Crop

(i) Pasture

(e) River

(j) Forest

Pre-Training on EuroSAT

Pretext Task

SimCLR ResNet18 – MoCoV2 ResNet18
SimSiam ResNet18 – VicReg ResNet18

Little difference

© 2024 Pixel Scientia Labs

Small domain-specific models are superior for small training sets

© 2024 Pixel Scientia Labs

EuroSAT: satellite

Example 2: Histopathology

- Domain: H&E colorectal tissue
- Training: 100k image patches
- Test: 7180 image patches from different hospitals
- Goal: predict 9 tissue classes
- Pre-train on various datasets, followed by linear classifier

Example 2: Histopathology

Problem: color variations from different scanners or staining procedures

Solution: simulate color variations with image augmentation

Example 2: Histopathology

Domain-specific model improves generalizability

Domain-Specific Foundation Model Best Practices

Benefits of Domain-Specific Small Foundation Models

- 1) Domain-specificity allows for smaller models
- 2) Reduced computational needs for training and inference
- 3) Adaptable to multiple downstream tasks
- 4) Develop proof of concept quicker
- 5) Increased accuracy on downstream tasks
- 6) Less reliance on labeled data
- 7) Improved generalizability to distribution shifts

Resources

https://pixelscientia.com/embedded2024/

Links to these slides, articles, podcasts, and other resources to guide you on your journey.

Foundation Model ROI Workshop	Wednesday, June 5 @ 12 pm EDT/9 am PDT A virtual workshop on how to identify the value and calculate the ROI of a vision foundation model approach.
Computer Vision Insights Newsletter	A biweekly newsletter that often features the latest research in foundation models.
Impact AI Podcast	Learn how to build a mission-driven machine, learning- powered company from the innovators and entrepreneurs who are leading the way.

