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This  paper  presents  a method  for automatic  color  and  intensity  normalization  of  digitized  histology  slides
stained  with  two  different  agents.  In  comparison  to previous  approaches,  prior  information  on  the stain
vectors  is used  in  the  plane  estimation  process,  resulting  in  improved  stability  of  the  estimates.  Due to  the
prevalence  of  hematoxylin  and  eosin  staining  for histology  slides,  the  proposed  method  has  significant
eywords:
ppearance normalization
istology

practical  utility.  In  particular,  it can  be used  as  a first  step  to  standardize  appearance  across  slides  and
is effective  at countering  effects  due  to  differing  stain  amounts  and  protocols  and  counteracting  slide
fading.  The  approach  is validated  against  non-prior  plane-fitting  using  synthetic  experiments  and  13  real
datasets.  Results  of application  of  the  method  to  adjustment  of  faded  slides  are  given,  and  the  effectiveness
of  the  method  in aiding  statistical  classification  is  shown.

©  2015  Elsevier  Ltd. All  rights  reserved.
. Introduction

Stains are often used to highlight distinct structures in
icroscopy slides of tissue samples. Frequently two stains, such as

osin and hematoxylin, are applied for purposes such as discrim-
nating cell nuclei and cytoplasm. Standardized staining protocols
elp to reduce variations in staining results; however, various fac-
ors can affect stain color and intensity in practice. For example,
tains can fade over time, stain colors may  differ slightly, or differ-
nt imaging equipment may  be used.

Standard stains absorb light. The concentrations of the various
tains on a sample will determine its appearance when illuminated
nder a microscope, with higher concentrations appearing darker.
he amount of light absorbed by a stain is wavelength dependent,
nd each stain can be characterized by its absorption coefficients.
hese coefficients form a vector (the stain vector)  of dimension
qual to the number of wavelengths in the imaging sensor (three

or a standard RGB camera). Given the stain vectors, an image
an be decomposed into components of each individual stain via
olor deconvolution [13]. These components can be adjusted and
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recomposed into an image which appears to have different
amounts of each stain than before. This paper proposes a method
for automatic stain vector estimation and slide appearance normal-
ization (both color and intensity). This can improve quality both for
viewing the slides as well as quantitative analysis of the slides.

Previous approaches to extract stain vectors include manual
region of interest definition, methods relying on non-negative
matrix factorizations [11], and working in the optical density
domain, including plane fitting [3] and learning per-image vectors
from manually segmented regions [5].

Stain vector estimation is not the only approach used for nor-
malization of histology slides. Reinhard et al. [12] transform images
into the lab color space and normalize the mean and standard devi-
ation of each channel of an image to a target image. Magee et al. [5]
propose an extension to this method which first segments the pix-
els into multiple classes based on color and then normalizes each
class separately. This method uses a prior obtained by computing
the mean of each pixel class over a set of manually segmented
images. Another common approach is equalization of color his-
tograms. Kothari et al. [1] use a modification of this approach which
normalizes using rank functions of unique colors rather than all

colors present in an image.

Methods which do not use prior information often have trouble
dealing with images which do not fit the assumptions made by
their models. Histogram-based methods assume that two  images

dx.doi.org/10.1016/j.compmedimag.2015.03.005
http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
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To introduce prior information, we  penalize the deviation from
a given reference plane (nT

px = 0) through a reference normal np.
The energy to be minimized now becomes( )
0 J. Vicory et al. / Computerized Medic

re similar in the amount of stain present. Stain vector estimation
ia plane-fitting becomes unstable in the cases where the number
f pixels with each stain is highly unbalanced. The method of [5]
hich does include prior information on stain vectors requires per-

mage manual segmentations of each stain.
This paper addresses these issues by introducing prior informa-

ion to the plane-fitting algorithm of [3]. This is an extension of the
ork by [8] with additional applications and validation. Novel con-

ributions include: (1) a rigorous theory for the color model used,
2) the introduction of prior information for the stain vector taking
nto account varying amounts of stain (such as that encountered in
he case of sparsely distributed nuclei on large amounts of stained
ackground tissue), (3) an alternating optimization method and its
onnection to a sub-problem from trust region optimization, (4)

 novel twist on Otsu thresholding [10] which also includes prior
nformation, and (5) quantitative validation on synthetic and real
atasets.

The rest of this paper is organized as follows: Section 2 gives
ackground information on the stain vector model used, Sec-
ion 3 describes the basic plane optimization problem, Section 4
dds prior information to this optimization, Section 5 describes
he prior-based clustering method, Section 6 describes the digital
estaining procedure, Section 7 gives results from a variety of exper-
ments, Section 8 describes several applications of this method, and
ection 9 gives conclusions and discussion.

. Stain vector model

According to the Beer–Lambert law, the transmission of light
hrough a material can be modeled as

 = I0e−˛cx (1)

here I0 is the intensity of the incident light, I is the intensity of
he light after passing through the medium,  ̨ is the absorption
oefficient, c the concentration of the absorbing substance, and x
he distance traveled through the medium. The optical density (OD)
r absorbance is

D = ˛cx = − log
(

I

I0

)
(2)

We assume that  ̨ and x are constant for a specimen and a given
tain, but that a stain’s concentration c may  change both locally and
etween slides. For a multispectral image, such as an RGB image
aptured with three wavelengths, Eq. (1) becomes vector-valued

 = I0 � e−˛cx (3)

esulting in an OD vector

D = − log(IøI0) = ˛cx (4)

Here, the absorption coefficients ˛i are color dependent, and �
nd ø represent element-wise vector multiplication and division.
ote that dark intensities will correspond to large optical density
alues and bright image parts where no absorption occurred will
ave small values. Each stain has a characteristic vector  ̨ of absorp-
ion coefficients. Given a traced distance x the optical density OD is
inearly related to the absorption coefficient, with a proportionality
onstant given by the stain concentration, i.e., OD = ˛xc.  Applying
he vector-valued Beer–Lambert law to the case of a two-stain color
mage, such as one stained by eosin and hematoxylin, yields

 = I0 � e−(˛1c1x1+˛2c2x2) (5)
here subscripts denote values for the two distinct stains. The
ptical density can be computed as

 log(IøI0) = ˛1c1x1 + ˛2c2x2 (6)
ging and Graphics 43 (2015) 89–98

This shows that, for a given illumination I0, the obtainable inten-
sity vectors I lie in the plane spanned by the absorption coefficients,
or stain vectors, ˛i . Since ci ≥ 0, xi ≥ 0, and the ˛i are linearly inde-
pendent, any color which can be represented by the imaging model
must lie in the convex cone

C = {x|x = q1˛1 + q2˛2, q1, q2 ≥ 0} (7)

If all possible optical density vectors are normalized, all points
must lie inside

CN =
{

x̃|x̃ = x

‖x‖ , x ∈
◦
C
}

(8)

where
◦
C denotes C\0. Geometrically, CN = S2 ∩ C,  the intersection of

C and the three-dimensional unit sphere, which is the sector of a
great circle.

3. Plane fitting

In the previous section, we described a method for transforming
an RGB image into optical density space. As shown in Fig. 1, when
an image stained with two  stains is transformed into OD space, the
image colors lie in the convex cone defined by the two  stain vectors.
The following sections develop a method for estimating both this
plane and the associated stain vectors.

By definition, the convex cone spanned by the stain vectors is a
subset of a plane P passing through the origin

P = {x : nT x = 0} (9)

where n is the plane’s unit normal. The signed distance of any point
to the plane can be computed as

d(x, P) = nT x

The plane which minimizes the sum of squared distances to all
given optical density vectors is given by minimizing

E(n) =
∑

i

(nT xi)
2 = nT

(∑
i

xix
T
i

)
n = nT Sn

s.t.‖n‖ = 1

(10)

Since S is positive semi-definite, n is the eigenvector of the
smallest eigenvalue of S. This unconstrained optimization was pro-
posed in [3].

The results of this estimation are only reliable when a sufficient
amount of both stains is present in the sample. When this assump-
tion does not hold, additional constraints are needed. Adding prior
information helps to ensure the estimator performs well. While
introducing prior information gives up the convenience of a closed-
form solution, it has clear benefits for increasing the stability of the
plane estimation (see Section 7). We  use an EM-style alternating
optimization approach with efficient solutions for both stages.

4. Plane prior information
E(n) = 1
2�2

n∑
i=1

d2(xi, P) + 1

2�2
0

‖n − np‖2

s.t. ‖n‖ = 1

(11)



J. Vicory et al. / Computerized Medical Imaging and Graphics 43 (2015) 89–98 91

Fig. 1. Distributions of image colors in RGB space (left) and OD space (right). The colors lie on a curved surface in RGB space yet are planar when transformed into OD space.
(For  interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)
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S = argmin{Sk}
k i∈Sk

‖xi − �i‖2 (13)

over all possible cluster sets Sk. For the case when only two classes
are sought, k-means simplifies to
here � is the standard deviation for the measured points
assumed to be independent) and �0 is the standard deviation of
he prior (assumed to be Gaussian).

Eq. (11) shows how, as n→ ∞,  the effect of the prior shrinks.
he distribution of points will only be approximately planar when
here are a large number of measurements for both stains. This dis-
ribution cannot be guaranteed, especially if working with smaller
ub-regions of a stained slide which may  contain low amounts of
uclei and high amounts of stained background. In this case, with-
ut the stabilizing effect of the prior information, the plane that is
t will be heavily biased toward the cluster with a large number of
oints and will be a poor fit to the actual stains present. This prob-

em can be overcome by weighting the data points assigned to a
tain vector.

Assuming the partitioning of these data points into two  clus-
ers (one for each stain) is known, the minimization energy (up to
onstants) is given by

(n) =
2∑

j=1

⎛
⎝ nj∑

i∈Pj

d2(xi, P)
2�2

+ ˛

2�2
0

‖n − np‖2

⎞
⎠wj (12)

here the wi are the weights, Pi the partitions, and ni the number of
oints in each partition. The partitioning method used is described

n Section 5.
The weights are chosen based on several conditions. The weights

ust take into account whether there are a sufficient number of
ata points in each cluster, and should simplify back to Eq. (11) if
he clusters are of equal size. The following conditions are placed
pon the weights for these properties to hold:

˛w1 + ˛w2 = 1 (first limit condition)

w1
n

2
+ w2

n

2
= n (second limit condition)

�

n1
= w1 (first cluster size condition)

� = w2 (second cluster size condition)

n2

The first two conditions ensure that Eq. (12) simplifies back to
q. (11) for equal size clusters, and the second two set the weights
nversely proportional to the cluster sizes. These conditions are
fulfilled for  ̨ = 1/2, w1 = 2n2/n,  and w2 = 2n1/n.  This allows clus-
ters to contribute equally even when the cluster sizes are uneven,
while simplifying back to the original equation when they are
equal, as desired. Substituting these values into Eq. (12), rearrang-
ing, and rescaling by 2�2n/(4cn1n2), the energy to be minimized
becomes

E(n) = nT

(
1

2n1

n1∑
i=1

xix
T
i + 1

2n2

n2∑
i=1

xix
T
i

)
n + n

4n1n2

�2

�2
0

‖n − np‖2

which is of the general form

Ep(n) = nT Sn + 1
�2

‖n − np‖2, s.t. ‖n‖ = 1

a weighted covariance matrix and cluster-dependent weighting of
the prior term, and assumes at least one point per cluster. Addi-
tional conditions for the weights could be used to remove this
condition if desired. This optimization problem is closely related
to finding a minimum over a boundary in trust-region optimiza-
tion [9] and can be solved as such. The overall solution alternates
between solving this optimization problem and reclustering the
data points until convergence.

5. Clustering

The plane-fitting algorithm described in Section 4 requires a
clustering method to partition the set of data points into two
classes. k-means[4] is one of the most popular clustering methods.
Standard k-means clustering minimizes∑∑
E =
∑
i∈S1

‖xi − �1‖2 +
∑
i∈S2

‖xi − �2‖2
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here �k = (
∑

i∈Sk
‖xi − �k‖2)/|Sk| are the cluster centers. Prior

nformation can be added to this two-class case to obtain

 =

⎛
⎝∑

i∈S1

‖xi − �1‖2

⎞
⎠+ 1

�2
1

‖�1 − �̄1‖2 +

⎛
⎝∑

i∈S2

‖xi − �2‖2

⎞
⎠

+ 1

�2
2

‖�2 − �̄2‖2

here � = ��
k

/�k is a user-defined constant and �̄1 and �̄2 are
riors for the cluster centers.

In the standard k-means algorithm, elements are assigned to
 current estimate of the cluster centers. From this new parti-
ioning, new cluster centers are calculated as the means of the
urrent clusters, and this process is iterated until convergence.
his optimization is non-convex, and so is not guaranteed to
each a global minimum. When seeking two cluster centers for
ne-dimensional features, however, k-means simplifies to Otsu
hresholding. Otsu thresholding [10] computes the globally optimal
eparation between two classes by searching the feature histogram
or the threshold which minimizes the intra-class variance.

A one-dimensional feature suitable for clustering the points in
he plane-fitting algorithm is angle in the fitting plane with respect
o a reference direction; in this case, the midpoint of the projec-
ions of the stain vector priors. Prior stain vector information is used
o prevent mis-clustering when the number of data points for one
tain direction clearly dominates the other. The actual stain vectors
re extreme directions specifying the boundaries of the optical den-
ity cone. These directions of pure color are not the norm, as most
olors are a mixed combination of these two extremes. For this rea-
on, the stain vectors themselves are not chosen as the priors for
lustering. Instead, priors are chosen to be slightly inward from the
one boundaries. Given two stain vectors s1 and s2, the priors are
hosen as the angles with respect to the reference direction of the
rojections �{qi} = qi − qT

i
nn onto the current estimate of the fit-

ing plane, where q1 = (1 − ˛)s1 + ˛s2 and q2 = ˛s1 + (1 − ˛)s2,  ̨ ∈ [0,
.5) are directions moved slightly inward from the cone bound-
ry. Including this prior information, the minimization problem
ecomes

(I ≤ I�, �1, �2) =

⎛
⎝ 1

�2
1

∑
i∈j:Ij≤I�

(Ii − �1)2

⎞
⎠+

⎛
⎝ 1

�2
2

∑
i∈j:Ij>I�

(Ii −�2)2

⎞
⎠

+ 1

(��
2 )

2
(�2 − �̄2)2 + 1

(��
1 )

2
(�1 − �̄1)2 (14)

hich is computed for all thresholds I� . For a given partitioning, the
ptimal values for �1 and �2 are

i = �2
i

�2
i

+ (��
i

)
2
ni

�̄i + (��
i

)
2
ni

�1
i

+ (��
i

)
2
ni

Īi (15)

here ni represents the numbers of points in a cluster and Īi the
ean angles in the cluster. Note that �1 and �2 are not simply the

oreground and background means, but a weighted average of the
eans and priors. Algorithm 1 gives an overview of the plane fitting
lgorithm with prior.

lgorithm 1. Algorithmic description of the optimal plane-fit
lgorithm.
ging and Graphics 43 (2015) 89–98

6. Restaining

Once an image’s stain vectors have been computed, it can be
restained to better match a target image. As stated in Section 2,
the relationship between an image’s optical density OD, its stain
vectors ˛i , and the amounts of each stain qi is given by the equation

OD = ˛q = ˛1q1 + ˛2q2

Once the ˛i have been estimated, the concentration of each stain
present in each pixel can be solved for. The stain concentrations are
given by

qi = ˛i
−1OD (16)

In order to restain the image to a different color space, these
concentrations must be rescaled to match a desired distribution.
This is done by adjusting the concentrations so that their median mq

matches a desired median mq̂: q̂ = (mq̂/mq)q. Given these adjusted
saturations and a set of desired stain vectors ˆ̨ , the restained image
is given by

Î = e−( ˆ̨1q̂1+ ˆ̨2q̂2) (17)

In practice, pixels with nearly no stain are thresholded out for
stability reasons.

7. Experiments and results

This section presents results on several different experiments
done to validate the effectiveness of the proposed method. Sec-
tion 7.1 demonstrates how the method performs when estimating
the plane normal direction for a synthetic dataset. Section 7.2
shows how incorporating prior information improves the consis-
tency of the plane estimation on a real dataset. Section 7.3 shows
the effectiveness of the method in restaining slides which have
faded over time. Section 7.4 shows how normalization improves
the performance of feature extraction and classification.

7.1. Plane normal estimation

Fig. 2 shows the results of a synthetic experiment to estimate the
plane normal. Three methods are compared: (1) estimation with-

out a plane normal prior (corresponding to the method in [3]), (2)
estimation with a plane normal prior, but without the clustering
step, and (3) the full algorithm. Estimation results shown are devi-
ations (in degrees) of the estimated normal vector n̂ with respect to
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Fig. 2. Synthetic experiments: angle difference (in degrees) between the estimated normal vector and the ground truth. Top row: proposed method. Middle row: plane fit
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ith  prior without clustering. Bottom row: plane fit without prior. Estimates are ave
 . .)  of points in the two stain clusters. The proposed method performs best. For equ
ighly  unbalanced stain distribution (5/1000). Note that the results are fairly insensi

he ground truth normal vector. To assess the influence of varying
luster sizes and normal priors, two stain vectors s1, s2 were chosen
t a 30◦ angle

1 =

⎛
⎝− sin �

cos �

0

⎞
⎠ , s2 =

⎛
⎝ sin �

cos �

0

⎞
⎠ with � = �

15
180

(18)

Priors q1 and q2 were then determined by rotating them in the
lane by angle �,  i.e.,

1 =

⎛
⎝− sin(� + �)

cos(� + �)

0

⎞
⎠ , q2 =

⎛
⎝ sin(� − �)

cos(� − �)

0

⎞
⎠ (19)

nd subsequently tilting them with respect to the plane that they
efine by an angle �. For testing purposes the such created priors
ere used directly, but the stain data was generated by creating

amples using an isotropic Gaussian distribution with the respec-
ive means of the stain vectors (s1 and s2) and standard deviation
f 0.1 (which is comparable to what we observe in real datasets).
or each combination of (�, �)  we created 1000 datasets to evalu-
te the mean performance of the different estimation methods in

ecovering the true normal vector of the plane defined by s1 and
2, n = (s1 × s2)/(‖ s1 × s2 ‖). The estimation performance was tested
or different distributions of stains. For s2 1000 sample points were
reated while for s1 the number of sample points was  5, 50, or 1000.
esults over 1000 random datasets for different priors and varying numbers (5/1000,
n distributions all three methods perform well. The difference is most striking for a

 the prior itself and that the clustering step improves results over the prior slightly.

The estimation algorithms had no knowledge of this unequal dis-
tribution. Only for (�, �)  = (0, 0) are the priors correct. Otherwise
they indicate various levels of deviation to assess the behavior of
the estimators for inaccuracies in the prior. As shown in Fig. 2, all
three methods to determine the plane normal have similar perfor-
mance for clusters of equal size (1000/1000) with angular errors
of less than 1◦. However, prior information improves the results
greatly for uneven point distributions. In the most extreme case of a
5/1000 sample point distribution the error of the proposed method
is on average about 10◦ smaller than the error of the method using a
plane fit only. Such imbalances are expected to occur for example in
regions with sparsely distributed nuclei. In cases where the effect
of the prior is most pronounced, the clustering further improves
estimation results slightly.

7.2. Consistency of estimation

Fig. 3 shows the performance of the method on 13 slides com-
pared to the direct plane fitting without a plane prior as in [3]. These
slides were randomly selected from a study of melanocytic lesions
and were scanned digitally using an Aperio ScanScope. The histol-
ogy images were subdivided into areas of 1000 × 1000 pixels and

were independently adjusted for stain intensity and stain direction
using the two  methods. Fig. 3 shows the estimation consistency
for the two  methods by comparing the mean deviation from the
mean normal vector across a slide (mean with respect to the tiles).
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Fig. 3. Estimation consistency for the proposed method and the method not using
prior information [3] comparing the mean deviation from the mean normal vector
across a slide (with respect to the tiles) in degrees. Smaller values and a tighter distri-
bution demonstrate the advantage of the proposed method. Results are statistically
significantly different.

F
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E
p
p
1
n
c
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t

By computing the stain vectors of the original image globally, but
ig. 4. Restaining of a real dataset using the proposed method (right) and the
ethod not using prior information (middle).

stimation consistency is statistically significantly better for the
roposed method (with p < 1e − 4 using a t-test or non-parametric
ermutation test). The mean deviation from the prior was around
1◦ for the method using prior information and 20◦ for the method
ot using the prior information. The tight distribution for the

onsistency results for the proposed method demonstrates that
he prior was not chosen to dominate the results. Fig. 4 shows
he results of application of the methods with and without prior

Fig. 5. A set of 12 slides before (left) a
ging and Graphics 43 (2015) 89–98

information on a slide. Fig. 5 shows the results of using the method
with prior to normalize the appearance of 12 images.

7.3. Faded slide normalization

An application of this method is normalizing the color of slides
which have faded over time. Fig. 6 shows the results of an exper-
iment on 23 pairs of images of cutaneous melanomas taken 2–7
years apart. The second scans show fading of stain intensities com-
pared with their original scans to varying degrees. The two scans
were registered to each other using a similarity transform com-
puted from specified landmarks to allow direct comparison of
corresponding image regions. The images were then downsam-
pled by a factor of 10 to ease computation, but the method can
work on full-size images if desired. This data is available online at
http://midas3.kitware.com/midas/folder/11138.

Stain vectors and intensities are estimated for the original scan
and the faded scan is adjusted to more closely match the original.
Effectiveness of this method is measured by computing the dis-
tance between a pair of images before and after the faded image
is adjusted. Distance is computed by calculating the earth mover’s
distance (EMD) between the color histograms of the image. EMD
represents the minimum energy needed to turn one histogram into
another. A simpler, equivalent computation is taking the distance
between the quantile functions of the two  histograms [2]. For this
experiment, the images were registered and subdivided into 100
patches (10 × 10 grid). An average EMD  is computed on the R, G,
and B channels for each patch. These patch-wise distances are then
averaged over all patches, giving a total image-to-image distance.

There are several ways to estimate the stain vectors and inten-
sity scalings needed to perform these adjustments. If the images
are treated in a purely local manner, the stain vectors and scal-
ings are estimated and applied on a patch-wise basis. This local
approach typically yields good improvement in the image distance
metric, but the resulting images often show artifacts of this local
treatment, especially on images with more severe fading. An alter-
native approach treats the images from a purely global perspective,
estimating a single set of stain vectors and intensity scalings and
globally adjusting the faded image to match. This yields smooth
restained images, but at the cost of lower quantitative performance.
performing intensity adjustment locally, a middle ground between
the two previous methods offers better performance than the
purely global approach while giving smoother images than purely

nd after (right) normalization.

http://midas3.kitware.com/midas/folder/11138
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F ium, and high fading. In each graph, the first box is the difference between the original
a nd adjusted faded images using the local, global, and mixed restaining schemes. The last
s rd color space.
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Fig. 7. Comparison of our method with others on slides with medium fading. Boxes
ig. 6. Results of the four different unfading schemes on the groups with low, med
nd  unadjusted faded image. The next three show difference between the original a
hows  the difference between the original and faded images, both adjusted to a thi

ocal. It is also possible to restain both the original and faded images
o a third, separate color space instead of adjusting one to match the
ther. The results of this approach using a local restaining scheme
re included as well.

Examining the distances between the original and faded images
rior to adjustment reveals that the pairs fall into three distinct
lusters, representing low, medium, and high levels of fading. Fig. 8
hows examples of each of these three classes and the results of
he various methods described above on each. The low fading class
hows small improvement across all methods, which is expected
ince there is only small room for improvement. The classes with
edium and large fading show much more significant improve-
ents across all methods. In general, the more local methods show

he most improvement in distance, while the more global methods
roduce visually smoother images.

Fig. 6 shows the results of these different unfading schemes on
 set of 23 pairs of images. The first plot shows results for 11 pairs
f images which show low amounts of fading, all of which were
canned approximately 2 years apart. The second plot shows results
or the eight pairs which show moderate amounts of fading, and
he third shows the four pairs with high amounts of fading. Both
he medium and high fading groups were scanned approximately

 years apart. In each plot, the first box shows the distribution of
MDs between the faded and nonfaded images. The following boxes
how EMDs between the nonfaded and adjusted images in the local,
ixed, global, and separate color space schemes respectively.
Fig. 7 shows the results of evaluating our method against three

thers for the task of restaining faded slides. R is the method of
einhard et al. [12], K the method of Kothari et al. [1], M the method
f Macenko et al. [3], and O is our method. The results are on the set
f slides which showed medium fading and all restaining is done
lobally. Methods R and K show small or no improvement overall.
he M method (plane fitting with no prior information) shows good
verall improvement in the mean but at the cost of high variation.
ur method shows a similar improvement in mean but much lower
ariation, demonstrating the additional stability provided by the
rior.

Fig. 8 shows the results of our restaining on typical images from
ach of the three classes. As can be seen, the global method pro-
ides a smoother result, but recovers less information overall than
ethods which include a local component.
The weight of the prior, here defined as its standard deviation

0, is an important parameter in determining the effectiveness
f the restaining. The results above were computed by setting
0 = 0.5 globally, which is a moderate weight for the prior. The

esults for the low fading class stay consistent across a wide range
f prior values. The medium class is somewhat less robust to
hange in the prior. A somewhat tighter distribution is obtained
or this class near �0 = 0.2, but the difference in mean EMD  is
are  B (base distance), R (Reinhard et al.), K (Kothari et al.), M (Macenko et al.), and
ours.

small (77.4 vs 80.1). For the class with high fading, a marked
improvement is seen at much lower standard deviations, such as
�0 = 0.01. In these cases, the higher prior weight seems to stabi-
lize the estimation of stain direction when there is only a small
amount of stain information present. This effect is much more
strongly seen in global schemes rather than local. These results
suggest that adaptively choosing �0 based on the initial difference
between the faded and unfaded images in a pair could be desir-
able.

7.4. Effect on classification

Another important application of slide appearance normal-
ization is in statistical analysis. Fig. 9 shows the effect of color
normalization on statistical classification. The goal of this analy-
sis is to classify slides as containing either melanoma or benign
nevi. This experiment compares 31 slides containing nevi and 21
containing melanoma. Each image has approximately 10 regions
identified by a pathologist. In each of these regions, cell nuclei are
segmented and then features are extracted based on these nuclear
segmentations using the process described in [7]. Classification was

done using three different processing methods: (1) no appearance
normalization, segmentation and feature extraction done on orig-
inal slides, (2) normalized slides used for segmentation, features
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F  low, m
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ig. 8. Examples of restained faded images. From top to bottom: images that show
riginal image, (c) faded image with global restaining, (d) faded image with mixed r
nd  (g) faded image restained to new space.

xtracted from original slides, and (3) normalized slides used for

oth segmentation and feature extraction.

As Fig. 9 shows, for distance-weighted discrimination (DWD) [6]
lassification with 10-fold cross-validation, there is clear improve-
ent when normalization is added. In particular, normalization
edium, and high fading. In each subfigure: (a) the unadjusted faded image, (b) the
ing, (e) faded image with local restaining, (f) original image restained to new space,

yields improvement in both the segmentation and feature extrac-

tion steps.

The significance of the difference in AUROC value between the
normalized and unnormalized data is evaluated using a bootstrap-
ping approach. Bootstrapping is done by, for a population of size n,
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ses  no normalization, partial normalizes for segmentation but not feature extrac-
ion, and full normalizes for both.

andomly sampling n values from the population with replacement.
rom this resampled population, a statistic of interest (in our case,
UROC) can be computed. If this process is iterated, a distribution
f these values can be created and analyzed.

We  perform bootstrapping on both the normalized and unnor-
alized data to get distributions of AUROC values for both

opulations. We  perform a two-sample t-test in order to assess
he significance of the difference between the two populations. For
00 resamplings, we find significant difference between the two
opulations at the p = 0.01 level.

Projecting the data onto the DWD  separating direction and look-
ng at the receiver operating characteristic (ROC) shows similar
esults. Fig. 9 shows the area under the ROC curve (AUROC). While
his shows little difference in the segmentation step, it again shows
mprovement when using the normalized images over the original
or feature extraction.

.5. Variation between manufacturers

Computing a plane fit using prior information is desirable due to
he variations in stains between batch and manufacturer. If the stain
irections were always identical, estimation would be unnecessary
s one could simply take the stain directions as fixed.

Five slides of normal skin were stained using stains from two
ifferent manufacturers. For the first group, the eosin and hema-
oxylin were from Richard-Allan with other reagents from Fisher.
or the second, the stains and other reagents were from Leica. For
ach pair of images, we convert them to OD space and compute

 PCA of the resulting data. In each case, the third principal com-
onent explains less than 1% of the variation, indicating that the
ata is highly planar. We  define the plane of the data as the plane
panned by the first two principal components.

The normal to these planes are compared for each pair of images.

n each case, the normal varies from 3◦ to 10◦, with an average devi-
tion of 6.5◦. While this difference is not large, is it consistent. Fig. 10
hows that the normals in each case show a consistent direction of

ig. 10. Normal directions for slides stained from two  manufacturers: one set in
lue, the other in red. The colored lines are drawn between the two  normals com-
uted for each slide. Notice there is a consistent left-to-right shift going from blue
o  red. (For interpretation of the references to color in this figure legend, the reader
s  referred to the web version of the article.)
ging and Graphics 43 (2015) 89–98 97

movement, going from the left side of the plot to the right in each
case. This demonstrates the need for estimating the stain directions
rather than taking them as constant in order to correct for this bias.

8. Applications

The method proposed in this paper has a variety of applications.
One such application is the restaining of slides which have faded
over time as discussed in Section 7. While its application here was  in
pairs of faded and nonfaded slides, the method could also be used
to unfade slides for which there is no nonfaded image available,
thus allowing them to be analyzed more easily.

Another application is the restaining of a population of images
to a common color space. This adjustment would allow for easier
comparison and statistical analysis of a group of images. The extra
constraint provided by the prior information would help to stabilize
this adjustment for statistical purposes.

Another possible application would be the restaining of an
image into a new color space for visualization purposes.

9. Conclusions

This paper presented a method to automatically adjust the
appearance of stained histology slides. It described a novel way
of adding prior information for the stain vectors and how to deal
with unequal stain distribution through a clustering process which
is a novel adaptation of Otsu thresholding to include prior informa-
tion. The underlying optimization problem is related to trust-region
optimization, and is therefore well studied and easy to solve. Exper-
iments on real and synthetic data show the superior performance
of the method developed compared with methods which use no
prior information. Results of applying the method to slides which
have faded over time show a potentially powerful application of
this method. Normalization of histology slides is shown to improve
performance of statistical classification of those slides.
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