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Radiology: Deep Learning Can

Predict Race

Generally not possible for human experts

Source: Canva

Source: Gichoya, Al recognition of patient race
in medical imaging: a modelling study, 2022

Area under the receiver
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Race detection in radiology imaging
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Even When the Images are Severely Corrupted

Area under the receiver
operating characteristics curve

“W]e emphasise that the ability of
Al to predict racial identity is itself
not the issue of importance, but
rather that this capability is readily
learned and therefore is likely to be
present in many medical image
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I, analysis models, providing a direct

vector for the reproduction or
exacerbation of the racial disparities
that already exist in medical
practice.”

Source: Gichoya, Al
recognition of patient race
in medical imaging: a
modelling study, 2022



Cardiac Ultrasound: Confounding Variables — Shortcut

AUC on engineered dataset with
race confounded by age or sex

Bias Race prediction | Race prediction
biased by sex biased by age

0.5 0.57 0.53
0.6 0.67 0.59
0.7 0.73 0.66
0.8 0.79 0.73
0.9 0.82 0.79
1.0 0.84 0.85

Source: Shutterstock

Source: Duffy, Confounders mediate Al prediction of
demographics in medical imaging, 2022



Goals of This Webinar

How bias manifests in medical images
Case study on histopathology
Detection

Mitigation



Who am [?

e Heather Couture
e Computer vision consultant
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e Keynote speaker at MICCAI workshop on computational pathology
e Contributor to Scientific American, The Pathologist, DPA Blog
e Newsletter and podcast

IMPACT A1l

Computer Vision Insights 5

e PhD in Computer Science from University of North Carolina



Sources of Bias

Bias: systematic deviation from fairness or accuracy that leads to partial or prejudiced
) outcomes

—
—

Dataset bias: under-representation of demographic or geographic groups
Sampling bias: class or medical center imbalance
Technical bias: scanner and tissue preparation

Annotation bias: clinician subjectivity

Modeling bias: feature extraction shortcuts, architecture decisions



Histopathology

las in

Sources of Bi

Case Study




Deep Learning Can Predict Age, Scanner
Type, Preparation Date, Site

B
patient age scanner type
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Source: Schmitt, Hidden Variables in Deep Learning Digital Pathology and Their
Potential to Cause Batch Effects: Prediction Model Study, 2021



Cancer-Type Imbalance in TCGA LN Medical center
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Demographic and Tumor Variations Across Sites
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Source: Howard, The Impact of Digital Histopathology Batch Effect on Deep Learning Model Accuracy and Bias, 2020



Color Variability in TCGA

RGB statistics Haralick texture features
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Source: Howard, The Impact of Digital Histopathology Batch Effect on Deep Learning Model Accuracy and Bias, 2020
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Scanner Variability

A 3DHistech 250 Hamamatsu S210  Aperio GT450
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3D Color Gamut
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Source: Chen, Algorithm fairness in artificial intelligence for medicine and healthcare, 2023



Tissue Thickness Variations
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Source: Shah, Impact of Tissue Thickness on Computational Quantification
of Features in Whole Slide Images for Diagnostic Pathology, 2025



Tissue Thickness Effects Color
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Tissue Thickness Effects Nuclei

Area of Nuclei per Patient for Each Thickness Difference entropy of Nuclei per Patient for Each Thickness
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Average quality measures of patches

Slide Preparation and Image Acquisition Artifacts

1.00 —
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0.50 —
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B Usability

tissue folding, dirt

tissue folding, dirt
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bubble and fchs

1

R : R
f coverslip| | coverslip glue _

0.93

ProMPT
(3,819 slides)

B No artefact

0.73

TCGA
(449 slides)

M Staining issues

0.67

B Out of focus

FOCUS

(788 slides)

M Folding

Source: Haghighat, PathProfiler: Automated
Quality Assessment of Retrospective
Histopathology Whole-Slide Image Cohorts by
Artificial Intelligence — A Case Study for Prostate
Cancer Research, 2021
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Terminology

Bias: systematic deviation from fairness or accuracy that leads to partial or prejudiced

outcomes
— 1O

Batch effect: systematic difference in data caused by technical variations between groups
of samples processed at different times or places, rather than by true biological differences

.* Spurious correlation: statistical relationship between two variables that appears
oo significant but is actually caused by a third confounding variable rather than any direct
. causal link between the variables

Shortcut: model relies on simple, superficial correlations to make predictions rather than
learning the true underlying relationships relevant to the task




How to Detect Bias, Batch Effects, and Spurious Correlations?

Talk to domain experts

Exploratory data analysis:
Data imbalance
Image variability
Batch effects

Calculate stratified metrics

Test for spurious correlations



Age group

Stratify Metrics to Check for Bias
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Detecting Spurious Correlations

Sanity test Implications of failing the test

Train and test with and without the target: Images contain spurious covariates that can be exploited by the

The system should achieve an AUC of around 0.5 when tested without model.
the target in test images.

Train and test using noise images: Classification performance cannot be attributed to recognition of
The system should achieve an AUC of around 0.5 on test data. the target (i.e., covariates contribute to the learned classification

decision rule).

Test system with different sized ROls: The system cannot decorrelate features of the target from its
The additional or reduced context should not alter the performance. co-occurring context [i.e., Contextual Bias (55)].

Original with Original without Noise image (generated Pancreas only
pancreas (WP) pancreas (WOP) from slice differences)

Tumor Pancreas

T a8

Source: Mahmood, Detecting Spurious Correlations With Sanity Tests for Artificial Intelligence Guided Radiology Systems, 2021



Detecting Spurious Correlations

Original with
pancreas (WP)

Pancreas only

Tumor Pancreas

Pancreas
Only

Original
WP

Original without Noise image (generated 0”335;,

pancreas (WOP) from slice differences)

Noise

DECT Original DECT
WP Noise

Pancreas Original Original
Only WP WOP Noise
0.82 0.68 0.67 0.62
(0.73-0.92)  (0.56-0.81)  (0.54-0.78)  (0.48-0.76)
0.59 0.95 0.58
(0.45-0.73) (0.89-1.0) (0.45-0.72)
0.65 0.60
(0.52-0.78) (0.46-0.74)
0.61 0.60 0.60
(0.48-0.75)  (0.46-0.73)  (0.46-0.74)

Development Tests

0.69 0.52
(0.64-0.73) [NCRTEN:TS)

0.60 0.45
(0.54-0.65) [ROXEEYEY)

0.59 0.51
(0.54-0.64) NORYENL))

0.51 057
(044-0.55) NOELENGR)

Generalization Tests

Source: Mahmood, Detecting Spurious Correlations With Sanity Tests for Artificial Intelligence Guided Radiology Systems, 2021
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Mitigation

Validation-level interventions: careful cross-validation

Data-level interventions: better collection, preprocessing, augmentation
(modality-dependent)

Model-level interventions: strategic sampling, group-specific model, feature
normalization, architecture choices, adversarial learning, foundation models



Careful Cross-Validation

Training Validation
1 | \
' » Site
3-Fold Split
Preserved Sites
> 2 ,

M site 1
B site 2
Site 3
M site4 AFR
B sie5 M EUR

B Site5

Source: Howard, The Impact of Digital Histopathology Batch Effect on Deep Learning Model Accuracy and Bias, 2020



Strategic Sampling or Subtype-Specific Model

Homologous Recombination Deficiency
in luminal breast cancers

Dataset Method AUC
TCGA No correction 0.71

Strategic sampling 0.63

Curie No correction 0.88

Luminals only 0.83

Source: Lazard, Deep learning identifies morphological patterns of homologous
recombination deficiency in luminal breast cancers from whole slide images, 2022



Balanced Sampling
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Source: Kheiri, Investigation on potential bias factors in histopathology datasets, 2025
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Batch Normalization

_ ComBat
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Batch Normalization

Tissue Source Site
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Source: Murchan, Deep feature batch correction using ComBat for
machine learning applications in computational pathology, 2024



Batch Normalization

Colon Adenocarcinoma

Stomach Adenocarcinoma
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Favor Simpler Solutions

Backbone Convolutional Blocks

Bp ——--s Block (B)) —s e BN
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Exit Decision Suppressed CAM f

Gate (G)) Predictor (Cj) Inductive Bias #2:
Inductive Bias #1: | Prefer constraining
Prefer exiting as Exit? veo! Output Predictor () the set of influential

early as possible visual regions

|
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Architecture+Method  Biased MNISTv2 COCO-on-Places BAR
Results on Standard ResNet-18

ResNet+ERM 36.8 + 0.7 35.6 + 1.0 51.3 +1.9

ResNet+SD [51] 37.1 +1.0 354 +os 51.3 +2.3

ResNet+Up Wt 37.7 + 1.6 35.2 + 04 51.1 410

ResNet+gDRO [56] 19.2 + 09 35.3 +o0.1 38.7 +2.2

ResNet+PGI [3] 48.6 + 0.7 42.7 + o6 53.6 +o.9
Results on OccamResNet-18

OccamResNet 65.0 1.0 43.4 + 10 52.6 £19

Source: Shrestha, OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses, 2024



Adversarial Learning

Input
Dermoscopy Image CT Imaging Fundus Photography

Chest X-R

Intermediate Feature
Representation

|

|

I I l Target
|:| [:I D Encoder Network Network

(e.g. - CNN, LSTM, MLP)
Attribute
Network

P N

Maximize objective
in predicting outcome
Minimize objective in
predicting protected attribute
(adversarial loss)

Prediction

Outcome Y

Protected A
Attributes

Debiased latent code

Confounding latent code
for protected attribute

Source: Chen, Algorithm fairness in artificial intelligence for medicine and healthcare, 2023



Foundation Models Can Help Reduce Bias

IDH1 mutation

mm White
1 Black
1 Asian
= = = QOverall

]

Race-stratified AUC

[

CTransPath

ResNet50,, |

t Lung subtyping [Breast subtyping]

UNI

-
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—
-

CTa nsPath

ResNet50,y

CTransPath

“ ResNet50,

ResNet50,, pretrained on
ImageNet

CTransPath/UNI pretrained
on histopathology

Source: Vaidya, Demographic bias in
misdiagnosis by computational pathology
models, 2024



Foundation Models Still Encode Batch Effects

Tissue source site prediction
TCGA-LUSC-5

901 = .l
) 5, i°n

TSS1 TSS1
TSS 22 TSS 56 TSS 66 Normal Tumor

G O

Accuracy [%]
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Ciga Kang-DINO CilransPath  Phikon UNI  ProvGigapath Virchow

CAMELYON16
II

100

90 1

80

70 A

Accuracy [%]

60

50 -

Ciga HIPT RetCCL  Kang-DINO CilransPath  Phikon UNI  ProvGigapath Virchow

mmm No Normalization mmm Reinhard Normalization mmm Macenko Normalization

Source: Kémen, Do Histopathological Foundation Models Eliminate Batch Effects? A Comparative Study, 2024



Some Models are More Robust to Medical Center Differences

medical center robustness index = how many of the k nearest neighbors represent the same biological class
how many of the k nearest neighbors represent the same medical center

1.24

1.14

g
o

robustness index

S
0

0.8

Source: de Jong, Current Pathology
Foundation Models are Unrobust to
Medical Center Differences, 2025
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Virchow2-1280D

model



Key Takeaways

1. Understand your data and sources of bias: quantify data imbalance, batch
effects, and potential spurious correlations early

2. Validate carefully
There are a variety of data- and model-level solutions, but no one-size-fits-all

4. Foundation models may help but do not solve the bias problem

o



Bonus Offer: 1 Hour Strategy Session

Get unstuck with a clear set of next steps

Improve the accuracy of your model

Train a more robust and generalizable model

Apply best practices for your unique challenges

Get computer vision insights from an experienced research scientist

$500 $#590 (33% discount if booked in the next 30 days)

https://calendly.com/hdcouture/post-webinar-strateqy-session

Other inquiries: heather@pixelscientia.com
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